Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen.
نویسندگان
چکیده
Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by ∼80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats.
منابع مشابه
Adaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملAdaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملChinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats
Objective(s):One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-in...
متن کاملThe Study of Histopathological Effects of Electric Welding Fumes on Bronchiole and Lung of Rats
Purpose: The aim of the present study was to identify the quantitative and qualitative changes of bronchiole and lung alveoli in Rat after exposure to welding fumes. Materials and Methods: A total number of 60 male Sprague Dawley Rats were divided into two groups: imental (40) and control (20). Rats of each group were subdivided into 2, 4, 6 and 8 subgroups. Experimental Rats were exposed to w...
متن کاملSustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 111 1 شماره
صفحات -
تاریخ انتشار 2011